Maximum Average Entropy-Based Quantization of Local Observations for Distributed Detection
نویسندگان
چکیده
In a wireless sensor network, multilevel quantization is necessary to find compromise between minimizing the power consumption of sensors and maximizing detection performance at fusion center (FC). The previous methods have been using distance measures such as J-divergence Bhattacharyya in this quantization. This work proposes different approach based on maximum average entropy output under both hypotheses utilizes it Neyman-Pearson criterion-based distributed scheme detect point source. receiver operating characteristics proposed (MAE) method quantizing outputs evaluated for when are available error-free FC non-coherent M-ary frequency shift keying communication used transmitting MAE quantized over Rayleigh fading channel. simulation studies show success cases where effect channel has incorporated. As expected, improves level increases with six-level approaches non-quantized data transmission.
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملOptimum Local Decision Rules in a Distributed Detection System with Dependent Observations
The theory of distributed detection is receiving a lot of attention. A common assumption used in previous studies is the conditional independence of the observations. In this paper, the optimization of local decision rules for distributed detection networks with correlated observations is considered. We focus on presenting the detection theory for parallel distributed detection networks with fi...
متن کاملOptimum Local Decision Rules in a Distributed Detection System with Dependent Observations
The theory of distributed detection is receiving a lot of attention. A common assumption used in previous studies is the conditional independence of the observations. In this paper, the optimization of local decision rules for distributed detection networks with correlated observations is considered. We focus on presenting the detection theory for parallel distributed detection networks with fi...
متن کاملDetection of perturbed quantization (PQ) steganography based on empirical matrix
Perturbed Quantization (PQ) steganography scheme is almost undetectable with the current steganalysis methods. We present a new steganalysis method for detection of this data hiding algorithm. We show that the PQ method distorts the dependencies of DCT coefficient values; especially changes much lower than significant bit planes. For steganalysis of PQ, we propose features extraction from the e...
متن کاملRates of Convergence for Distributed Average Consensus with Probabilistic Quantization
Probabilistically quantized distributed averaging (PQDA) is a fully decentralized algorithm for performing average consensus in a network with finite-rate links. At each iteration, nodes exchange quantized messages with their immediate neighbors. Then each node locally computes a weighted average of the messages it received, quantizes this new value using a randomized quantization scheme, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Digital Signal Processing
سال: 2022
ISSN: ['1051-2004', '1095-4333']
DOI: https://doi.org/10.1016/j.dsp.2022.103427